

November 21, 2014

PACMAN on Mars: Multi-Functional Orbiting NanoSatellite Platform

Power And Communications with a Modular Array of Nanosatellites

Author

Jeff Harvey, Structures and Mechanisms MMA Design tiharvey@mmadesignllc.com

Concept Collaborators

Don Brown, Avionics and Software
Tiger Innovations
Pamela Clark, Science Mission Concepts
NASA GSFC/Catholic University

PACMAN Platform Concept

- PACMAN is an array of deployable NanoSatellites
- Provides an infrastructure interface system that allows pooling of instrument platform resources
 - Adds a vehicle's capabilities to the collective
 - Dormant or retired systems continue to add to the net capability
 - Instruments can function collaboratively to produce data neither could do independently
 - Can save a malfunctioning instrument system
- Enables flexible and cost effective fielding of a variety of scientific instruments

- Small form factor spacecraft (CubeSats, NanoSat, etc.,) have limited capability due to size constraints
 - Power
 - Communications
 - Attitude control (ACS)
 - Command and Data Handling (CDH)
- Infrastructure hardware often consumes about half of a NanoSat's volume
 - Limits instrument volume
 - Volume is at a premium in a CubeSat
- Access to Mars is extremely difficult to achieve

- Through resource pooling PACMAN provides or improves
 - Electric Power System
 - Command and Data Handling
 - Attitude Control System
 - Propulsion
 - High speed communication links
 - Various other bus infrastructure (low-drift clock, etc.)
- Can lower total mission cost
- The large deployed structure of PACMAN meets the positional knowledge requirements for some instruments requiring disaggregated sensors
 - Sparse apertures
 - Interferometers
- Physical connectivity
 - Increases reliability
 - Requires minimal fuel for transit and space docking
 - Can have fuel/ACS payloads added over time as needed

Changes the Way Instruments are Fielded MIMADesi and Resources are Used

- Creates a service providing infrastructure on an as needed basis
 - Allows sensor to be bulk of payload
 - Primary Power comes from the platform
 - Primary attitude control from the platform
 - Interplanetary Communication resources are provided and used communally
 - Increase payload to housekeeping volume percentages
- Docking to a PACMAN
 - Standardized docking ports for any mass compliant vehicle
 - Standardized Payload Transport Vehicle
 - To get an instrument to the PACMAN
 - Standardized volumes, electrical, mechanical and software interfaces
 - Simple, reliable, cost effective infrastructure for sensor systems

Payload Transport Vehicle Concept

Standardized Docking Port

Base Infrastructure

- Docking
 - Semi-autonomous or man in loop docking
 - Use technology developed by DARPA
 - Orbital Express
 - F6
- Each PACMANcraft is stand alone
 - Can dock 4 or more science mission craft
 - Each PACMANcraft has excess capabilities to augment payloads
- Multiple PACMANcraft can be docked to form a large system
 - Each hosted mission craft requires limited propulsion
 - Expandability allows very large structures
- Assembled in space
- Special modules can be added to augment
 - Maneuverability (Propulsion)
 - Up front processing
 - Special power needs
 - Large antennas/Communications

	t
1	
	á
	í
	(

Some Potential Mars Science Orbital Payloads and Applications					
Description	Compact Payload	Example	MEPAG Goals		
Characterize seasonal/event	broadband IR Spectrometers	BIRCHES	II.A.1, 3: water, volatile		
variations in Water and other			exchange, and dust on all scales,		
Volatile Distribution on Mars			III: evolution of surface and		
Surface			interior of Mars		
Characterize Mars seasonal and	Thermal emission spectrometers	TIS	II.A.1, 3: water and dust on all		
global event variations in			scales		
temperature, emissivity, soil					
distribution					
Characterize Mars solar events	Ion Spectrometers,	QB50 INMS	II.A present atmosphere		
and Seasonal Changes on	Magnetometers, Plasma		variations, composition; III:		
atmosphere, ionosphere, magnetic	Analyzers		magnetic field, interior and		
anomalies at various altitudes			thermal evolution		
Characterize Mars Neutral	Mass Spectrometer, specialized	•	II.A volatile exchange,		
Atmosphere, including trace	sensitive gas sensors (e.g.,	Occultation InfraRed	constituents, clouds		
gases, variations and loss at	atmospheric solar occultation	Venus Express			
various altitudes	using echelle spectrometer with				
		Alpha Photometer			
	alpha H/D photometer	Indian Mars Orbiter)			
Multi-platform imaging	Compact Visible/IR Camera		II.A: lightning detection, dust on		
		Camera RFI	all scales, III: evolution of		
			surface and interior		
_	1		II.A: present atmosphere, winds,		
1 -	pressure, neutral and charged	(Piezo dust detector)	clouds		
latitude, terrain, global events and					
seasons	detectors, cubesat aerobraking				
	deployable shields				

Science Theme

Potential Science Objectives

Measurement

Mars Formulation

Instrument

Possible mission configurations Orbiters — Orbiter Networks — Phobos Lander CubeSats — Mars Rover Piggyback

Relevant MEPAG/HEO Goal

Weather monitoring	MEPAG Goal II: Understand processes of climate on Mars, characterize Mars' present climate/atmosphere II.A.1,3: Water & dust on all scales, volatile exchange HEO: Effects of dust	Presence of dust clouds and water clouds	Camera
Atmospheric profiling (T,P, etc.)	MEPAG Goal II.A: Characterize Mars' present atmosphere. HEO: Improved atmospheric modeling	Temperature, pressure , dust concentration, etc. profile vs. altitude	Atmospheric Radio Occultation Atmospheric Light Science
Atmospheric composition	MEPAG Goal II.A.1,3: Water, CO₂ on all scales, volatile exchange HEO: Atmospheric constituents	Atmospheric chemical	Mass Spectrometer
		composition	Sub-mm wave spectrometer
		Atmospheric water vapor concentration	Microwave Radiometer
		Atmospheric dust/micro- meteorite concentration	Dust Detector
Atmospheric winds	MEPAG Goal II.A: Characterize Mars' present atmosphere	Atmospheric wind speed &	Lidar
		direction vs. altitude	Sub-mm wave spectrometer
Cloud properties	MEPAG Goal II.A.1,3: Water on all scales, volatile exchange	Cloud properties	Polarimeter
Surface mineralogy	MEPAG Goal III: Determine evolution of surface of Mars. HEO: Geology/composition of Phobos and Deimos	Mineralogy	Imaging Spectrometer
Gravity field	MEPAG Goal III.B.1: Understand evolution of Mars' interior	Measure gravity field (high order J-terms)	Gravity Light Science
			Investigation
			Gravity Field Formation Flight
Lightning detection	MEPAG Goal II.A: Characterize Mars' present atmosphere.	Radio signals from lightning	Radio detector
	HEO: Atmospheric electricity	Light flash from lightning	Photodiode
Magnetometry	MEPAG Goal III.B.2,3: Understand evolution of Mars' interior magnetic field, thermal evolution of planet	Magnetic field	Magnetometer
Radiation	HEO: Radiation	Radiation environment	Radiation Detector
		Total radiated dose	Dosimeter
		Solar wind	Plasma Instrument
		Neutron detection	Neutron Spectrometer

CubeSats are well suited to address narrowly focused MEPAG & Decadal Survey goals & investigations, rather than complex multifaceted questions